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Abstract. Two statistical properties, namely, the energy level spacing distribution and the
Dyson–Mehta13 statistics, are reported for the energy band structure of a confined, surface
superlattice in perpendicularly applied magnetic fields. Time-reversal(T ) symmetry is broken in
the system. However, the system is invariant under the anti-unitary combination of symmetric
operations which includesT , leading to what is calledfalse time-reversal violation. For the
wave vectork not in close vicinity of the symmetrical points ink-space, the statistical properties
of the band structure at sufficiently strong magnetic fields are found to be described by Gaussian
orthogonal ensemble (GOE) statistics. This result is a clear manifestation of quantum chaos in
the system and is in agreement with the prediction that the false time-reversal violation suffices
to give the energy spectra the properties of the GOE, instead of the Gaussian unitary ensemble.
The spectra are found to deviate from the GOE statistics when the wave vectork is moved
towards the symmetrical points ink-space and/or the magnetic field towardsB = 0. This is
because in these limit cases, the system is invariant under at least one geometric, symmetrical
operation and hence spectral degeneracy becomes possible. The implications of this work for
experiments are also discussed.

The idea of studying classically chaotic systems by analysis of the statistical properties of
their quantum-mechanical energy spectra goes back to the fifties when Wigner proposed a
new kind of statistical mechanics for the energy spectra of complex systems [1]. It is now
well known that the statistical properties of the energy spectra are universal [2–4]: they
depend only on the symmetries of the Hamiltonian and not on the details of the dynamic
properties of the systems. Thus, the distribution ofn consecutive energy levels of a given
system is statistically equivalent to the behaviour ofn consecutive eigenvalues chosen from
an ensemble of random matrices with a corresponding symmetry.

Using the language of random-matrix theory (RMT), three symmetry classes of random-
matrix ensembles are defined to describe the statistical properties of correlated energy
levels: systems in which the time-reversal symmetry is broken are described by the unitary
ensemble; time-reversal-invariant systems are described by either the orthogonal or the
symplectic ensemble depending on whether or not the systems are, in addition, invariant
under rotation. Uncorrelated energy levels are, however, described by the Poisson statistics.

In this paper, we report a statistical analysis of the energy spectra of a confined, two-
dimensional (2D), antidot superlattice in perpendicularly applied magnetic fields. The work
is motivated by recent experimental [5] and theoretical [6] studies of electron transport in
similar systems, namely, finite antidot lattices. It was observed that the conductance of
these systems exhibits strong, irregular oscillations whose detail is very sensitive to the
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potential profile of the systems. Since the peaks in the oscillations can be associated with
the transmission through electron states [6], this irregularity manifests that the systems
have complicated, system-dependent electronic spectra. One is then led to ask whether
there is some universal (system-independent) behaviour in the apparently very complicated
spectra. In a preliminary study [7], an indication of the universality was observed in a
periodic superlattice of this type. The present paper will be devoted to a detailed study and
discussion of the universal behaviour in the energy spectra of the system.

For an infinite, 2D, antidot superlattice, it was found [8, 9] that the statistical behaviour
of the magnetic band structure depends strongly on the magnetic wave vector and on the
number of magnetic flux quanta penetrating a unit cell. For a rational number of flux
quanta, the magnetic band structure does not show the statistical features of chaos when
the flux denominator is sufficiently large [8]. For an integer number of flux quanta, the
energy levels at a non-symmetric point in the magnetic wave-vector space are described by
the Gaussian unitary ensemble (GUE) statistics, while the Gaussian orthogonal ensemble
(GOE) or (almost) Poisson statistics are found in the magnetic band structure at a symmetric
point [8]. However, the GUE statistics was not found at all, in the preliminary study of
reference [7], in the magnetic band structure of a confined, 2D, antidot superlattice where
time-reversal (T ) symmetry is broken. Instead, the band structure of the system was found
to possess the properties of the GOE in a large range of magnetic fields. The reason for
this will be explained in more detail in this work.

Figure 1. A schematic view of the square, antidot superlattice confined in a square-well quantum
channel with hard walls. In this work, the lattice potential was modelled by a smooth function
given in equation (1). The period of the lattice and the width of the channel were taken to be
a = 100 nm andw = 400 nm, respectively. As a result, the superlattice has four periods across
the channel.

The system that we have considered is a square, antidot lattice implanted in thex–y
plane with a perioda in a wide channel of widthw as shown in figure 1. The potential of
the antidot lattice will be described by a realistic model of the form

V (x, y) = V0 {cos[πx/a] cos[πy/a]}2β (1)

where|x| <∞ and|y| 6 w/2, whileV0 and integralβ control the strength and steepness of
the antidot potential. This type of potential was used by Fleischmann, Geisel and Ketzmerick
[10] in the study of classical electron dynamics in a free, 2D, antidot superlattice. In the
present work, the assumption thatV0 = 1 eV andβ = 10 was made for the periodic antidot
potential, and a square-well potential with hard walls was used to define the channel. The
lattice spacing was taken to bea = 100 nm and the width of the square wellw = 400 nm,
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so that the antidot potential has four periods along they-direction (figure 1). The motion
of a spinless electron in the system inside the channel is described by the Hamiltonian

H = 1

2m∗
[P + eA(x, y)]2+ V (x, y) (2)

wherem∗ is the electron effective mass, andA = (−By, 0, 0) is the vector potential in the
Landau gauge. The assumption was made in this work that the massm∗ = 0.067me, which is
appropriate for an AlxGa1−xAs/GaAs 2D electron system. In equation (2), the magnetic field
B = (0, 0, B) breaks time-reversal symmetry. Furthermore, with the potential defined in
equation (1), the system is, in general, classically not integrable and the classical dynamics
in the system is very likely to be chaotic. We therefore expect the quantum-mechanical
energy spectra of the system to show the signature of quantum chaos, namely, spectral
correlations.

The translation invariance of the Hamiltonian allows us to reduce the quantum-
mechanical problem to the study of the electron motion in a single unit cell. Using Bloch’s
theorem, the Schrödinger equation can be written as

Hkuk(x, y) = E(k)uk(x, y) (3)

wherek is the Bloch momentum, or the wave vector, in thex-direction,uk(x + a, y) =
uk(x, y) is the periodic part of the single-electron wave function and the reduced Hamil-
tonian is

Hk = − h̄2

2m∗

(
∂2

∂x2
+ ∂2

∂y2

)
− i h̄2

m∗

(
k − eBy

h̄

)
∂

∂x
+ h̄2

2m∗

(
k − eBy

h̄

)2

+ V (x, y). (4)

Equation (3) with the Hamiltonian given in equation (4) was solved numerically for a given
wave vectork and magnetic fieldB on the basis of functions of the form

8`m(x, y) = 1

a1/2
exp(iK`x)φm(y) (5)

whereK` = 2π`/a with ` = 0,±1,±2, . . . ,±∞ andφm(y) with m = 1, 2, . . . ,∞ are the
transverse eigenfunctions of the pure quantum channel. The magnetic band structure of the
system was obtained by presenting the calculated eigenvaluesEn(k) (with n being the band
index) as a function of the wave vectork for each magnetic field valueB. Because the
band structure is symmetric with respect tok = 0, only the half of the band structure for
the wave vector in the range 06 k 6 π/a was actually calculated and used for the spectral
statistics.

The typical magnetic band structure of the system is presented in figure 2, where the
energy band correlations can be seen. It is shown that when the wave vectork is moved
away fromk = 0 andπ/a, the energy bands may approach each other, but will never cross.
The energy bands always tend to repel, when they come very close, and show anti-crossings.
We notice that the energy band correlations were also observed in the electronic structure
of the silicon crystal and the AlxGa1−xAs alloy by Mucciolo and co-workers [11].

As a result of this type of correlation, the statistical properties of the magnetic band
structure are expected to be described by the statistics of a random-matrix ensemble. It
can be easily verified that the reduced HamiltonianHk given in equation (4) is, in general,
invariant neither underT nor under any geometric symmetrical operation—for example,
the reflectionRx (x → −x). However, the Hamiltonian is invariant under the anti-unitary
operationT Rx ; that is, it possesses afalse time-reversal violation. It has been shown [12]
that this falseT -violation is sufficient to lead to GOE statistics, rather than GUE statistics
as one might naively have assumed.
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Figure 2. Typical magnetic band structure of the confined, surface superlattice as shown in
figure 1. The left-hand panel shows the band structure calculated at an applied magnetic field
B = 0.5 T for about 100 energy bands, corresponding to the band indexn ≈ 150 to 250. The
right-hand panel is a portion of the band structure plotted on an expanded energy scale. Notice
the anti-crossings of the energy bands atk 6= 0 andπ/a.

The two most frequently studied characteristics of spectral statistics are the level spacing
distributionP(s), wheres is the nearest-neighbour band spacing (hereafter we will always
express energies in units of the mean band spacing and refer toP(s) as the band spacing
distribution), and the Dyson–Mehta statistics13 [13]. P(s) measures the band repulsion;
it is normalized.13 measures the rigidity of the spectrum; it is given by the variance of
the number of energy eigenvalues found in an energy interval of lengthL:

13(L) = 1

L

〈
min
a,b

∫ Ē+L/2

Ē−L/2
dE [N(E)− aE − b]2

〉
(6)

whereN(E) is the number of energy levels below the energyE and the angle brackets
indicate the statistical average which we will specify later.

In terms of RMT,P(s) and13 can be approached using analytical expressions [2]. For
a correlated energy band sequence, one has

P(s) = Nβsβ exp(−Cβs2) (7)

whereβ = 1,C1 = π/4 andN1 = π/2 for the GOE, andβ = 2,C2 = 4/π andN2 = 32/π2

for the GUE. The Dyson–Mehta statistics for a correlated energy band sequence is [2]

13(L) = 1

15
L−4

[
L5−

∫ L

0
du (L− u)3(2L2− 9Lu− 3u2)Yβ(u)

]
(8)

whereYβ(u) is the two-level cluster function given by

Y1(u) =
[

sin(πu)

πu

]2

+ d

du

[
sin(πu)

πu

] ∫ ∞
u

dt
sin(πt)

πt
for β = 1 (GOE) (9)

Y2(u) =
[

sin(πu)

πu

]2

for β = 2 (GUE). (10)
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Figure 3. The spectral statistics for the magnetic band structure of the confined, surface
superlattice as shown in figure 1. The data were extracted from the energy eigenvalues of
301 energy bands with the band indexn = 200 to 500, 41 equally spacedk-points in the range
k = 0.3π/a to 0.7π/a and 71 equally spaced magnetic field values in the rangeB = 0.3 to 1 T.
(a) shows the band spacing distributionP(s); (b) shows the Dyson–Mehta statistics13(L). The
full, chain, and dashed curves give the theoretical predictions for the GOE, GUE and Poisson
statistics, respectively.

When the bands are completely uncorrelated, one has Poisson statistics ofP(s) = e−s and
13(L) = L/15 [2].

The numerical calculations of these two statistical characteristics for our system
proceeded as follows. We first generated a number of magnetic band structures for the
system by shifting the magnetic field by steps of 0.01 T. In each magnetic energy band
structure, the energy eigenvalues for a finite number ofk-points with an equal spacing of
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Figure 4. The spectral statistics for the magnetic band structure of the confined, surface
superlattice as shown in figure 1 at differentk-values. The data for eachk-value were extracted
from the energy eigenvalues of 501 energy bands with the band indexn = 100 to 600 and 71
equally spaced magnetic field values in the rangeB = 0.3 to 1 T. (a) and (b) show the band
spacing distributionP(s) and the Dyson–Mehta statistics13(L), respectively, fork = 0.01π/a;
(c) and (d) those fork = 0.04π/a; (e) and (f ) those fork = 0.07π/a; (g) and (h) those for
k = 0.10π/a. The full, chain, and dashed curves give the theoretical predictions for the GOE,
GUE and Poisson statistics, respectively.

1k = 0.01π/a were considered. The statistical average was taken over different values of
the magnetic field and the wave vectork, and over a large number of energy bands. (Note
that in the calculations for the13 statistics, the average over the energy bands was taken
over those values of̄E for which the intervals defined between̄E−L/2 andĒ+L/2 do not
overlap.) The energy values atk = 0 andπ/a were excluded from the statistical average,
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Figure 4. (Continued)

because in this caseHk is invariant under space inversion and the occurrence of degeneracy
is thus possible.

The spectra need to be unfolded before being statistically averaged. There are different
ways of unfolding the spectra [14, 15]. In this work, the spectral unfolding was carried out
in the following way. Let us explicitly write the energy band eigenvalues, before expressing
them in units of the mean band spacing, asEn(ki, Bj ) (n = 0, 1, . . . , N ; i = 1, . . . , K;
j = 1, . . . ,M). The spacings between adjacent energy levels are

S(i,j)n = En(ki, Bj )− En−1(ki, Bj ) n = 1, . . . , N. (11)
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Figure 4. (Continued)

The set{S(i,j)n } has then been replaced by the set{s(i,j)n } where

s(i,j)n = S
(i,j)
n

Sn
(12)

with

Sn = 1

KM

K∑
i=1

M∑
j=1

S(i,j)n . (13)

Now the spectra corresponding to the set{s(i,j)n } are unfolded in the sense that the level
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Figure 4. (Continued)

density in the spectra is statistically uniform, i.e.,

sn = 1

KM

K∑
i=1

M∑
j=1

s(i,j)n = 1 for all n. (14)

The unfolded spectra were then expressed in units of the mean energy band spacing which
was evaluated at each pair of given values ofk andB.

The results of our calculations of the statistical properties of the energy spectra of the
surface superlattice are summarized in figures 3–5. In these figures the comparison of our
results with the RMT predictions are also presented. Figure 3 shows our numerical results
extracted from a set of the energy eigenvalues in the magnetic energy bands with band
indexn = 200 to 500 (corresponding to the energy range between about 40 and 100 meV)
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Figure 5. The spectral statistics for the magnetic band structure of the confined, surface
superlattice as shown in figure 1 in three different ranges of the magnetic field. The data
for each range of magnetic field were extracted from the energy eigenvalues of 101 energy
bands with the band indexn = 300 to 400, 61 equally spacedk-points in the rangek = 0.2π/a
to 0.8π/a and 40 equally spaced magnetic field values. (a) and (b) show the band spacing
distributionP(s) and the Dyson–Mehta statistics13(L), respectively, forB = 0.01 to 0.40 T;
(c) and (d) those forB = 0.11 to 0.50 T; (e) and (f ) those forB = 0.21 to 0.60 T. The
full, chain and dashed curves give the theoretical predictions for the GOE, GUE and Poisson
statistics, respectively.

computed for 41k-points and 71 magnetic field values. Thesek-points (equally spaced in
the range 0.3π/a to 0.7π/a) and magnetic field values (equally spaced in the range 0.3 to
1 T) are chosen such that the correlations between the energy bands are well developed.
Notice the good agreement with the RMT predictions for the GOE. This is in contrast to
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Figure 5. (Continued)

the work of references [8, 9] on the magnetic band structure of a 2D, surface superlattice
where GUE statistics, instead of GOE statistics, was reported for the energy spectra at non-
symmetric points in the magnetic wave-vector space. However, our results are consistent
with the prediction [12] that although time-reversal symmetry and all geometric symmetries
are broken in the HamiltonianHk (equation (4)) of the system, the symmetry under the
anti-unitary combinationT Rx should lead to the statistics of the GOE.

As we pointed out, the HamiltonianHk given in equation (4) is invariant under the
space inversion (P ) at k = 0 or π/a, the space reflectiony → −y (Ry) at B = 0, or Rx ,
Ry , andP at k = 0 andB = 0 or k = π/a andB = 0. Deviations from GOE statistics
are therefore expected in the statistical properties of the energy spectra whenk approaches
zero orπ/a, and/orB approaches zero. This is demonstrated in figures 4 and 5.
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Figure 5. (Continued)

Figure 4 shows the band spacing distributionP(s) and the13 statistics extracted from
the energy eigenvalues of about 500 energy bands (n = 100–600) and 70 equally spaced
magnetic field values in the rangeB = 0.3 to 1 T atfour individual wave vectors, namely,
k = 0.01π/a,0.04π/a,0.07π/a and 0.1π/a. A clear deviation from GOE statistics is
seen as we move the wave vectork towardsk = 0. The same result was also found as
we move the wave vector towardsk = π/a. This deviation can be simply understood as
follows: in the limit cases ofk = 0 or k = π/a, twofold spectral degeneracy is possible,
because of the existence of the space inversion(P ) symmetry in the HamiltonianHk (see
equation (4)). Thus, the energy levels in the spectra can be divided into two categories
according to the parity of their wave functions underP . In each category, the spectra
show GOE statistics. The full spectra of the system show the statistics resulting from a
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superposition of two independent spectra with GOE statistics. It was shown [16] that the
level spacing distributionP(s) for the superposed spectra has a non-zero value ats = 0.
However, the spectral statistics presented in figure 4 shows thatP(s) = 0 at s = 0. This
difference results simply from the fact that the energy levels atk = 0 andk = π/a have
been explicitly excluded from the level statistics in this work.

In figure 5, we show the band spacing distributionP(s) and the13 statistics of the
energy spectra for three ranges of the magnetic field. The overlaps between these three
ranges were allowed in order to create a sufficient number of data for the statistical average.
The data in each magnetic field range were extracted from the energy eigenvalues in about
101 energy bands (n = 300 to 400), 61 equally spacedk-points (k = 0.2π/a to 0.8π/a),
and 40 magnetic field values (with an equal spacing1B = 0.01 T ). The deviations from
the RMT predictions for the GOE are clearly visible in the statistical properties of the
energy spectra at low magnetic fields (figures 5(a) and 5(d)), while good agreement with
the RMT predictions is seen in the statistical properties of the energy spectra at magnetic
fields beyondB = 0.2 T (figures 5(e) and 5(f )). The result is seen more clearly in the
13 statistics, but the indication is still visible in the band spacing distributionP(s). The
deviations seen in this figure can be understood in the same way as the above.

The statistical properties of the correlated spectra in the system should be observable
experimentally. Methods suitable for the fabrication of such a confined, surface superlattice
are available today (see, for example, references [5, 17, 18]). The energy states above
the Fermi level can be detected by optical methods from either inter-band or intra-band
transitions. A tunable magnetic field can be applied to the system in order to obtain a large
number of data and hence facilitate the statistical analysis.

To summarize, we have reported a numerical study of the two statistical properties,
namely, the energy band spacing distributionP(s) and the Dyson–Mehta statistics13(L),
for the magnetic band structure of a confined, surface superlattice in perpendicularly applied
magnetic fields. The time-reversal symmetry is broken in the system due to the presence
of the magnetic fields. However, the reduced HamiltonianHk given in equation (4) shows
a false time-reversal violation, i.e., it is invariant under the anti-unitary combinationT Rx .
Since the magnetic band structure of the system is symmetric with respect tok = 0, only the
half of the band structure for the wave vector in the range 06 k 6 π/a has been considered
in the spectral analysis. For the wave vectork not in the close vicinity of the symmetrical
points ofk = 0 andπ/a, the magnetic band structures at sufficiently strong magnetic fields
are found to exhibit GOE statistics, in agreement with the prediction that the false time-
reversal violation is sufficient for the energy spectra to possess the properties of the GOE,
instead of the GUE. The appearance of GOE or GUE statistics is usually associated with
quantum chaos. The spectral statistics is found to deviate from GOE statistics when the
wave vectork is moved close tok = 0 or π/a, and/or the magnetic field is moved close
to B = 0, because in these limit cases, the HamiltonianHk is invariant under at least one
geometric, symmetrical operation and hence the spectral degeneracy becomes possible. The
implications of this work for experiments have also been discussed.
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